Molecular Packing Modes. Part IV.t Crystal and Molecular Structures of Three Cinnamic Acids

By S. E. Filippakis, L. Leiserowitz* D. Rabinovich, and G. M. J. Schmidt, Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel

The crystal structures of β-methyl-cis-. (III). β-chloro-cis-. (II). and β-chloro-trans-cinnamic. (I). acids have been determined from three-dimensional counter data by Patterson and Fourier methods. (I): $a=19 \cdot 588$, $b=5 \cdot 374, c=16.683 \AA . \beta=103 \cdot 62^{\circ} . Z=8$. space group $A 2 / a . R 0.054$ (1873 reflections) : (II) : $a=5.797$. $b=24 \cdot 247, c=7 \cdot 240 A: \beta=121 \cdot 56^{\circ} . Z=4$. space group $P 2_{1} / c . R 0 \cdot 046$ (1917 reflections): (III) : $a=7 \cdot 504$ $b=7.442, c=17.056 \AA . \beta=107.00^{\circ} . Z=4$. space group $P 2_{1} / c . R 0.066$ (1987 reflections). The σ values of the experimental bond lengths are $<0.01 \AA$, except for the $\mathrm{C}-\mathrm{H}$ bonds where they are 0.03 A .
The electron-density distribution in the planes of the paired carboxy-groups and the lengths of the $\mathrm{C}-\mathrm{O}$ bonds suggests that the packing of these groups is disordered in the two cis-cinnamic acids but not in β-chloro-transcinnamic acid.

THE structure analyses of the three cinnamic acids (I)(III) were originally undertaken in order to provide further information on the mechanism and crystal-
(I)

(D)

(IV)

(III)

structure dependence of cis-trans interconversion in the solid state. ${ }^{1}$ At the same time a comparison of the bond characteristics, in particular of the $\mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{C}$ system, of pairs of geometrical isomers in the cinnamic acids was considered interesting as well as an analysis of the hydrogen-bonding pattern of the acid function.

EXPERIMENTAL

Numbering of atoms employed in the structure analyses
Preparation of Materials.-Chloro-derivatives. The mixture of the two chloro-acids obtained by the action of concentrated hydrochloric acid on phenylpropiolic acid ${ }^{2}$ was separated via their barium salts. ${ }^{3}$
Methyl derivatives. The trans-acid was obtained by the Reformatzky reaction of acetophenone with methyl bromoacetate, followed by dehydration and hydrolysis. Irradiation of the trans-acid in alkaline solution (quartz vessel) with a medium-pressure quartz burner led to partial isomerisation; ${ }^{4}$ the cis-acid was precipitated at pH 2 after removal of the trans-isomer at $\mathrm{pH} 7 .{ }^{1}$

Crystal Data.-(i) β-Chloro-trans-cinnamic acid, (I).
\dagger Part III, L. Leiserowitz and G. M. J. Schmidt, J. Chem. Soc. (A), 1969, 2372.

1 J. Bergman, K. Osaki, G. M. J. Schmidt, and F. I. Sonntag, J. Chem. Soc., 1964, 2021.
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClO}_{2}, M=182 \cdot 5$, m.p. $143-144{ }^{\circ} \mathrm{C}$. Monoclinic, $a=$ $19.588(1), \quad b=5 \cdot 374(1), \quad c=16.683(1) \AA, \quad \beta=103.62(1)^{\circ}$, $U=1699.2 \AA^{3}, Z=8, D_{\mathrm{c}}=1 \cdot 427, F(000)=752$. Space group $A 2 / a$ or $A a$ (the former established as correct by the present analysis) from systematic absences: $h 0 l$ for h and l odd, $h k l$ for $k+l$ odd. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5405 \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=36 \mathrm{~cm}^{-1}$.
(ii) β-Chloro-cis-cinnamic acid, (II). $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClO}_{2}, \quad$ m.p. 132-133 ${ }^{\circ} \mathrm{C}$. Monoclinic, $a=5 \cdot 797(1), b=24 \cdot 247(1), c=$ $7 \cdot 240(1) \AA, \quad \beta=121 \cdot 56(1)^{\circ}, \quad U=867 \cdot 0 \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=$ $1 \cdot 367, F(000)=376$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ for l odd, $0 k 0$ for k odd. $\quad \mu\left(\mathrm{Cu}-K_{\alpha}\right)=35 \mathrm{~cm}^{-1}$.
(iii) β-Methyl-cis-cinnamic acid, (III), $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}, \quad M=$ $162 \cdot 2$, m.p. $131.0-131.5^{\circ} \mathrm{C}$. Monoclinic, $a=7.504(1)$, $b=7 \cdot 442(1), \quad c=17 \cdot 056(1) \AA, \quad \beta=107 \cdot 00(1)^{\circ}, \quad U=$ $910 \cdot 9 \AA^{3}, Z=4, D_{\mathrm{c}}=1 \cdot 182, F(000)=344$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ for l odd, $0 k 0$ for k odd. $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=6.7 \mathrm{~cm}^{-1}$.
(iv) β-Methyl-trans-cinnamic acid, (IV). $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$, m.p. $97.5-98.0^{\circ} \mathrm{C}$. Triclinic, $a=12.98, b=18.52, c=7.55 \AA$, $\alpha=98.5, \quad \beta=105.7, \quad \gamma=100.1^{\circ}, U=842.8 \AA^{3}, \quad Z=8$, $D_{\mathrm{c}}=1 \cdot 27$. Space group $P 1$ or $P \overline{1}$.
β-Chloro-trans-cinnamic acid (I) was crystallised by slow evaporation of ethanol solutions as monoclinic laths elongated along [010], showing $\{100\},\{001\}$, and $\{21 \overline{1}\}$. Crystals of β-chloro-cis-cinnamic acid (II) were obtained by slow evaporation ethyl acetate solutions showing $\{100\},\{010\}$, and $\{001\}$. Needles of β-methyl-cis-cinnamic acid (III), elongated along [100], showing $\{010\}$, $\{001\}$, and $\{201\}$, were obtained by slow evaporation of methyl acetate solutions. β-Methyl-trans-cinnamic acid (IV) was crystallised from slowly cooled light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) solutions.
Cell constants were determined from zero- and n-level Weissenberg and precession photographs, accurate cell dimension being derived by a least-squares procedure based on high-angle spectra measured on the General Electric goniostat with $\mathrm{Cu}-K_{\alpha}$ radiation.
The three-dimensional data for the three acids were collected on a General Electric goniostat by the stationarycounter, stationary-crystal technique. During the periods of measurement the monitored intensities gradually fell off by 12 (I), 15 (II), and 20% (III). The weighting factors $w(h k l)$ were derived by the procedure previously described; ${ }^{5}$ reflections were regarded as unobserved $2 \sigma(I-B)>$

2 R. Stoermer and P. Heymann, Ber., 1913, 46, 1249.
${ }_{3}$ T. C. James, J. Chem. Soc., 1911, 99, 1620.
${ }^{4}$ R. Stoermer, F. Grimm, and E. Laage, Ber., 1917, 50, 959.
${ }^{5}$ S. E. Filippakis, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1967, 305.
$(I-B)$, where I is the measured intensity and B the associated background. The dimensions of the three crystal specimens were: (I) $0,0.07,0.27,0.08,0,0.38$, $0,0.40 \mathrm{~mm}$, measured normal to the faces $100, \overline{1} 00,001,00 \overline{1}$, $\overline{2} \overline{1} 1,21 \overline{1}, 2 \overline{1} \overline{1}, \overline{2} 11$; (II) $0,0.28,0,0 \cdot 15,0,0.25 \mathrm{~mm}$, measured normal to the faces $00 \overline{1}, 001,0 \overline{1} 0,010, \overline{1} 00,100$; and (III) $0.06,0,0.26,0,0.35,0$, measured normal to the faces $00 \overline{1}$, $001,0 \overline{1} 0,010,20 \overline{1}, \overline{2} 01$. Absorption corrections were applied according to our standard procedure. ${ }^{6}$ The number of Gaussian grid points ${ }^{7,8}$ used in the computation of the absorption factors were 1440 (I), 1200 (II), and 1000 (III).

Solution and Refinement of the Structures.-(i) β-Chloro-trans-cinnamic acid, (I). 1873 Independent reflections were recorded of which 266 were unobserved. The intensities ranged from $70,000-1$ counts s^{-1} counted for a preset period of 10s. The sharpened three-dimensional Patterson function was computed with coefficients $F^{2}(h k l) / f_{\mathrm{Cl}^{2}}{ }^{2}$. The ${ }^{s} P(x \mathrm{O} z)$ section exhibited a very strong peak at $1 \cdot 7 \AA$ from the origin; on the assumption that this peak corresponded to the $\mathrm{C} \cdots \mathrm{Cl}$ vector parallel to the ac plane all co-ordinates could be deduced from the Patterson sections. The trial parameters were smoothly refined isotropically till R^{\prime} was $0.15\left[R^{\prime}=\Sigma w\left(k^{2} F_{0}{ }^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2} / \sum w k^{4}\left|F_{0}{ }^{4}\right|\right]$. At this stage all hydrogen atoms were inserted in chemically reasonable positions; the hydroxy-hydrogen was attached to the oxygen of the longer $\mathrm{C}-\mathrm{O}$ bond. Refinement was continued with anisotropic temperature factors for all but the hydrogen atoms until the (undamped) shifts had become $<0.02 \sigma$. Secondary extinction corrections ${ }^{5}$ were then applied; further least-squares cycles left the positional parameters of all atoms unchanged, but produced shifts in the temperature parameters. The final agreement factors were R^{\prime} 0.021 and $R 0.056$ (all reflections) and 0.054 (observed reflections only).
(ii) β-Chloro-cis-cinnamic acid, (II). 1917 Independent reflections were recorded of which 320 were unobserved. The intensities ranged from $25,000-1$ counts s^{-1} counted for a preset period of 10 s . Trial co-ordinates were taken from the structure of the isomorphous β-bromo-cis-cinnamic acid and refined as described for (I) except that in view of the equality of the $\mathrm{C}-\mathrm{O}$ bond lengths (1.261 and $1.259 \AA$) the hydroxy-hydrogen was not inserted into the model.
After several least-squares cycles secondary-extinction corrections were applied, and refinement was continued until the parameter shifts had become negligible.
(iii) β-Methyl-cis-cinnamic acid, (III).-1987 Reflections were measured of which 799 were unobserved. The structure was solved by our SEARCH procedure ${ }^{9}$ with a molecular model constructed from the previously solved β-chloro-cis-cinnamic acid. Refinement of the SEARCH model with anisotropic temperature factors of all but the hydrogen atoms proceeded smoothly until R^{\prime} and R were 0.017 and 0.073 (all reflections) and 0.064 (observed only). Secondary extinction corrections were applied to measurements on the original crystal; several further least-squares cycles introduced no changes in positional parameters but did affect the thermal parameters $\left[\begin{array}{lll}R^{\prime} & 0.017 ; & R 0.071\end{array}\right.$ $(0.063)]$. Throughout this refinement procedure the hydrogen atoms of the carboxy-group had been omitted in view

[^0]Table 1
Atomic co-ordinates and standard deviations (\AA) referred to axes a, b, c
(a) β-Chloro-trans-cinnamic acid

Atom	x	y	z
$\mathrm{C}(3)$	0.6562(27)	1-3776(24)	-1.0274(23)
C(4)	$1 \cdot 1320(26)$	2.3807(25)	$-1.8787(23)$
C(5)	2-1502(23)	3-2572(23)	-1.4841(21)
C(6)	2.6238(22)	4-1880(22)	-2.4288(20)
C(7)	$3 \cdot 5324(27)$	5•2200(27)	-1.9285(24)
$\mathrm{C}(8)$	3.9819(30)	6.0711(29)	-2.8276(28)
$\mathrm{C}(9)$	3.5086(29)	$5 \cdot 9064(28)$	- $4.2214(27)$
C(10)	$2 \cdot 5939(30)$	4-8865(29)	-4.7452(26)
C(11)	2-1683(29)	4.0198(28)	-3.8513(23)
$\mathrm{Cl}(12)$	3.0338(11)	3.3720(11)	$0 \cdot 2240$ (7)
$\mathrm{O}(1)$	1.0555(22)	1-2655(20)	0.2160(17)
$\mathrm{O}(2)$	-0.2842(22)	0.5760(20)	- $1.7902(18)$
$\mathrm{H}(13)$	-0.545(34)	-0.092(36)	-1.211(32)
$\mathrm{H}(14)$	$0 \cdot 696$ (34)	2.351(32)	-2.878(31)
$\mathrm{H}(15)$	3.816(31)	5•325(32)	$-0.952(28)$
$\mathrm{H}(16)$	4.593(36)	6.784(35)	$-2.515(30)$
H(17)	$3.785(36)$	6.513(33)	-4.932(30)
$\mathrm{H}(18)$	2.242(31)	$4 \cdot 770(33)$	$-5.706(30)$
$\mathrm{H}(19)$	1-496(35)	$3 \cdot 309(34)$	-4.264(32)

(b) β-Chloro-cis-cinnamic acid			
Atom	x	y	z
C(3)	-1.9422(28)	0.8148(22)	2.5941(25)
C(4)	$-1.2651(29)$	1-3788(24)	1.7250(26)
C(5)	-0.3362(24)	$2 \cdot 4537(22)$	2.1564(24)
C(6)	$0 \cdot 1402(22)$	3.3815(19)	3-4694(23)
C(7)	1.7106(26)	3.5301(23)	4.6341(27)
C(8)	2-1336(28)	4-4173(26)	5-8557(28)
C(9)	1.0159(31)	5•1758(24)	5.9109(29)
C(10)	-0.5329(30)	5.0493(24)	$4.7487(31)$
C(11)	-0.9775(25)	4-1564(23)	3.5337(28)
$\mathrm{Cl}(12)$	$0 \cdot 3901$ (7)	2.8816(8)	$0.9573(7)$
$\mathrm{O}(1)$	$-2.9676(25)$	-0.0826(19)	1-8882(23)
$\mathrm{O}(2)$	-1.4864(25)	1-1914(18)	3.9696(20)
$h^{1}(13) *$	$-3.329(96)$	-0.347(91)	2-464(92)
$h^{2}(13) *$	$-1.942(80)$	$0 \cdot 809(80)$	$4 \cdot 470$ (77)
$\mathrm{H}(14)$	- 1.548(24)	0.893(26)	0.739(29)
$\mathrm{H}(15)$	2.479(29)	2.958(25)	4.553(30)
H(16)	3.256(33)	4-534(29)	6.694(32)
$\mathrm{H}(17)$	1-364(32)	5•774(28)	6.778(31)
$\mathrm{H}(18)$	$-1.356(32)$	5.576(30)	4.810 (30)
$\mathrm{H}(19)$	-2.051(33)	4•061(28)	$2.755(30)$

(c) β-Methyl-cis-cinnamic acid

Atom	x	y	z
$\mathrm{C}(3)$	$-1.7317(24)$	0.9698(23)	-0.6077(23)
C(4)	$-3.0536(25)$	$1 \cdot 7013(23)$	$-0.9360(23)$
C(5)	-3.4106(22)	2-7308(21)	-1.8387(22)
C(6)	$-2.5220(22)$	3-3226(19)	$-2.6415(22)$
C(7)	$-2.7274(28)$	$2 \cdot 9585(23)$	$-4 \cdot 0127(25)$
C(8)	$-1.9279(34)$	3-5404(29)	$-4.7789(31)$
C(9)	$-0.9331(32)$	$4 \cdot 4803(28)$	$-4 \cdot 1847(38)$
$\mathrm{C}(10)$	$-0.7516(31)$	$4 \cdot 8603(29)$	$-2.8325(38)$
C(11)	$-1.5330(28)$	4-2882(25)	$-2.0652(30)$
$\mathrm{C}(12)$	$-4.8168(32)$	3-3787(35)	-2.0895(39)
$\mathrm{O}(1)$	$-1.6160(23)$	$0 \cdot 0203(20)$	0.2703(20)
$\mathrm{O}(2)$	$-0.7693(23)$	$1 \cdot 2528(20)$	$-1 \cdot 1284(21)$
$h^{1}(13) *$	$-0.811(80)$	-0.366(57)	$0 \cdot 495$ (62)
$h^{2}(13) *$	-0.166(67)	$0 \cdot 850(50)$	-0.861(55)
$\mathrm{H}(14)$	$-3.712(25)$	$1 \cdot 365(21)$	-0.458(23)
$\mathrm{H}(15)$	-3.513(26)	$2 \cdot 327(23)$	-4.466(27)
$\mathrm{H}(16)$	-2.076(29)	3-268(25)	$-5 \cdot 713(30)$
$\mathrm{H}(17)$	-0.361(29)	4-857(24)	-4.761(29)
$\mathrm{H}(18)$	-0.017(34)	$5 \cdot 563(29)$	$-2.370(33)$
$\mathrm{H}(19)$	-1.385(29)	4-558(23)	$-1.057(29)$
$\mathrm{H}(20)$	-5.290(31)	3-340(25)	-3.165(34)
$\mathrm{H}(21)$	-4.687(30)	4-289(29)	-1.818(31)
H(22)	$-5 \cdot 360(32)$	2.934(26)	-1.543(30)

* For definition of h^{1} and h^{2} see Discussion section.
of the lengths of the two $\mathrm{C}-\mathrm{O}$ bonds ($1 \cdot 259 \mathrm{l} \cdot 281 \AA$). With the further refinement of the electron-density in the carboxygroup described in the Discussion section, these values changes to 1.253 and $1.275 \AA$.

The positional and thermal parameters of the three

The mean σ value of the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$, and $\mathrm{C}-\mathrm{Cl}$ bond lengths are $0.004,0.004$, and $0.003 \AA$, and of all $\mathrm{C}-\mathrm{H}$ bonds is $0.03 \AA$. The mean σ value of angles between heavy atoms is 0.3°, that of angles involving one hydrogen, 2°. As an independent check of σ for bond lengths we compute the ' bond

Table 2
Observed thermal parameters $u_{i j}$ and U and standard deviations $\left(\AA^{2}\right)$ referred to axes a, b, c
(a) β-Chloro-trans-cinnamic acid

Atom	u_{11}	u_{22}	u_{33}	u_{12}		u_{23}	u_{13}
$\mathrm{C}(3)$	$0 \cdot 0685(13)$	$0 \cdot 0555(14)$	$0 \cdot 0551(12)$	$-0.0097(10)$		$0 \cdot 0063(10)$	0.0198(10)
C(4)	$0 \cdot 0676(13)$	$0 \cdot 0592(14)$	$0 \cdot 0495(11)$	$-0.0083(11)$		$0 \cdot 0115(10)$	$0 \cdot 0136(10)$
$\mathrm{C}(5)$	$0 \cdot 0574(11)$	$0 \cdot 0561(13)$	$0 \cdot 0455(10)$	$-0.0022(9)$		$0 \cdot 0065(8)$	$0 \cdot 0159(8)$
$\mathrm{C}(6)$	$0 \cdot 0542(10)$	$0 \cdot 0494(11)$	$0 \cdot 0499(10)$	$-0.0011(9)$		$0 \cdot 0064(8)$	$0 \cdot 0179(9)$
$\mathrm{C}(7)$	$0 \cdot 0696(13)$	$0 \cdot 0632(15)$	$0 \cdot 0533(12)$	-0.0102(12)		$0 \cdot 0023(10)$	$0 \cdot 0188(10)$
$\mathrm{C}(8)$	$0 \cdot 0788(16)$	$0 \cdot 0604(16)$	$0 \cdot 0712(15)$	-0.0182(13)		$0 \cdot 0034(12)$	$0 \cdot 0259(13)$
$\mathrm{C}(9)$	$0 \cdot 0789(16)$	$0.0611(15)$	$0 \cdot 0678(14)$	$-0.0030(12)$		$0 \cdot 0160$ (12)	$0 \cdot 0321(13)$
$\mathrm{C}(10)$	$0 \cdot 0814(16)$	0.0787(18)	$0 \cdot 0527(13)$	-0.0102(14)		$0 \cdot 0121(11)$	$0 \cdot 0222(12)$
C(11)	$0.0751(15)$	$0 \cdot 0675$ (15)	$0 \cdot 0518(12)$	-0.0167(12)		$0 \cdot 0050(10)$	$0 \cdot 0189(11)$
$\mathrm{Cl}(12)$	$0 \cdot 1344$ (8)	$0 \cdot 1474(9)$	$0 \cdot 0443(4)$	$-0.0825(7)$		$0 \cdot 0214(4)$	$0 \cdot 0004(4)$
$\mathrm{O}(1)$	$0 \cdot 0991$ (14)	$0 \cdot 0805(13)$	$0.0531(9)$	$-0.0357(12)$		0.0141 (8)	$0 \cdot 0139(9)$
$\mathrm{O}(2)$	$0 \cdot 0926(13)$	$0 \cdot 0763(13)$	$0.0553(9)$	-0.0329(11)		$0 \cdot 0098(8)$	$0 \cdot 0140$ (9)
Atom	U	Atom	U	Atom	U	Atom	U
$\mathrm{H}(13)$	0.086(12)	$\mathrm{H}(15)$	0.042(7)	H(17)	0.058(9)	$\mathrm{H}(19)$	$0 \cdot 060(9)$
$\mathrm{H}(14)$	0.052(8)	$\mathrm{H}(16)$	$0 \cdot 046(8)$	H(18)	$0 \cdot 050$ (8)		

(b) β-Chloro-cis-cinnamic acid

Atom	u_{11}
$\mathrm{C}(3)$	$0.0753(14)$
$\mathrm{C}(4)$	$0.0779(14)$
$\mathrm{C}(5)$	$0.0563(11)$
$\mathrm{C}(6)$	$0.0496(9)$
$\mathrm{C}(7)$	$0.0525(11)$
$\mathrm{C}(8)$	$0.0612(13)$
$\mathrm{C}(9)$	$0.0789(15)$
$\mathrm{C}(10)$	$0.0702(14)$
$\mathrm{C}(11)$	$0.0493(10)$
$\mathrm{Cl}(12)$	$0.0714(4)$
$\mathrm{O}(1)$	$0.1048(14)$
$\mathrm{O}(2)$	$0.1112(14)$
Atom	U
$h^{1}(13)$	$0.077(25)$
$h^{2}(13)$	$0.048(17)$

u_{22}	u_{33}
$0.0513(11)$	$0.0549(11)$
$0.0595(12)$	$0.0563(11)$
$0.0582(11)$	$0.0557(10)$
$0.0430(9)$	$0.0555(10)$
$0.0552(11)$	$0.0692(12)$
$0.0670(14)$	$0.0620(12)$
$0.0552(12)$	$0.0670(13)$
$0.0551(11)$	$0.0825(15)$
$0.0564(11)$	$0.0704(12)$
$0.0928(5)$	$0.0664(4)$
$0.0669(10)$	$0.0736(11)$
$0.0635(10)$	$0.0612(9)$

u_{12}
$-0.0137(10)$
$-0.0110(10)$
$-0.0015(9)$
$-0.0029(7)$
$0.0028(9)$
$-0.0024(10)$
$-0.0071(11)$
$0.0044(10)$
$-0.0012(9)$
$-0.0130(3)$
$-0.0377(10)$
$-0.0297(9)$

u_{23}	u_{13}
$-0.0087(9)$	$0 \cdot 0337(10)$
$-0 \cdot 0083(9)$	$0 \cdot 0370(11)$
$0 \cdot 0036(9)$	$0 \cdot 0313(9)$
$0 \cdot 0043(8)$	$0 \cdot 0281(8)$
$-0 \cdot 0028(10)$	$0 \cdot 0292(10)$
$-0 \cdot 0059(10)$	$0 \cdot 0233(10)$
$-0.0082(10)$	$0.0410(11)$
$0.0010(11)$	$0.0483(12)$
$0 \cdot 0027(10)$	$0.0302(10)$
$-0.0021(3)$	$0.0450(3)$
$-0.0219(8)$	$0.0534(10)$
$-0.0124(7)$	$0.0502(10)$

Atom	U	Atom	U
$\mathrm{H}(16)$	$0.052(7)$	$\mathrm{H}(18)$	$0.052(7)$
$\mathrm{H}(17)$	$0.049(7)$	$\mathrm{H}(19)$	$0.049(7)$

(c) β-Methyl-cis-cinnamic acid

Atom	u_{11}	u_{22}	u_{33}
C(3)	$0 \cdot 0843(15)$	$0 \cdot 0898(14)$	$0 \cdot 0711$ (12)
C(4)	$0 \cdot 0787(14)$	$0 \cdot 0912(14)$	$0 \cdot 0768(14)$
C(5)	$0 \cdot 0763(13)$	$0 \cdot 0814(13)$	$0 \cdot 0718(12)$
C(6)	$0 \cdot 0722(12)$	$0 \cdot 0689(11)$	$0 \cdot 0747(13)$
C(7)	$0 \cdot 0994(17)$	$0 \cdot 0860(15)$	$0 \cdot 0803(15)$
$\mathrm{C}(8)$	$0 \cdot 1201(21)$	$0 \cdot 1031(18)$	$0 \cdot 0867(18)$
$\mathrm{C}(9)$	$0 \cdot 0976(19)$	$0 \cdot 0962(18)$	$0 \cdot 1284(24)$
$\mathrm{C}(10)$	$0 \cdot 1029(20)$	$0 \cdot 1075(19)$	$0 \cdot 1274(24)$
C(11)	0.0994(17)	$0 \cdot 1029(17)$	0.0900(17)
$\mathrm{C}(12)$	$0 \cdot 0901(18)$	$0 \cdot 1042(21)$	$0 \cdot 1161(24)$
$\mathrm{O}(1)$	$0 \cdot 0938(13)$	$0 \cdot 1158(13)$	$0 \cdot 1030(13)$
$\mathrm{O}(2)$	$0 \cdot 0860(13)$	$0 \cdot 1163(14)$	0.1176(14)

u_{12}
$-0.0182(12)$
$-0.0127(12)$
$-0.0107(10)$
$0.0010(9)$
$0.0004(12)$
$0.0246(16)$
$0.0170(14)$
$-0.0269(16)$
$-0.0299(13)$
$0.0023(15)$
$0.0013(11)$
$0.0063(11)$

u_{23}	u_{13}
$0.0070(11)$	$0.0294(11)$
$0.0008(11)$	$0.0290(11)$
$-0.0117(11)$	$0.0227(10)$
$0.0004(9)$	$0.0231(10)$
$-0.0047(12)$	$0.0344(13)$
$0.0101(15)$	$0.0480(16)$
$0.0344(17)$	$0.0558(18)$
$0.0066(17)$	$0.0402(18)$
$-0.0061(14)$	$0.0292(14)$
$-0.0033(17)$	$0.0418(17)$
$0.0390(11)$	$0.0413(10)$
$0.0447(11)$	$0.0452(11)$

Atom	U	Atom	U
$h^{1}(13)$	$0.074(19)$	$\mathrm{H}(15)$	$0.076(8)$
$h^{2}(13)$	$0.035(16)$	$\mathrm{H}(16)$	$0.089(9)$
$\mathrm{H}(14)$	$0.067(7)$	$\mathrm{H}(17)$	$0.090(8)$

Atom			
$\mathrm{H}(18)$	$0 \cdot 114(10)$	Atom	U
$\mathrm{H}(19)$	$0 \cdot 083(8)$	$\mathrm{H}(21)$	$0 \cdot 090(10)$
$\mathrm{H}(20)$	$0.096(9)$	$\mathrm{H}(22)$	$0.093(9)$

compounds are listed in Tables 1 and 2. $k F_{0}$ and F_{0} are listed in Supplementary Publication No. SUP 20324 (60 pp., 2 microfiches).* Scattering factor curves were taken from ref. 10 for carbon and oxygen, from ref. 11 for hydrogen, and from ref. 12 for chlorine.

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
scatter' of chemically equivalent $\mathrm{C}-\mathrm{C}$ bonds, $\sigma(r)$, as $0.005 \AA$. Experimental bond lengths and angles are shown
${ }^{10}$ J. Berghius, IJ. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, Acta Cryst., 1955, 8, 478.
${ }^{11}$ R. McWeeny, Acta Cryst., 1951, 4, 513.
12 B. Dawson, Acta Cryst., 1960, 13, 403.
in Figures 1 and 2. The equations of certain best planes and the distances of atoms from these planes, are given in Table 3.

Figure 1 Experimental bond lengths: (a) β-chloro-trans-, (b) β-chloro-cis-, and (c) β-methyl-cis-cinnamic acid

DISCUSSION

Bond Lengths and Angles.-Since the bond lengths could not be corrected for thermal vibrations we consider that the σ values do not provide a fine yardstick for their comparison. Table 4 shows that comparable $\mathrm{C}-\mathrm{C}$ bond lengths are essentially identical in the three structures. On the other hand, the differences in the $\mathrm{C}-\mathrm{Cl}$ bonds of (I) and (II) and in the $\mathrm{C}-\mathrm{O}$ bonds of (I) are certainly significant. That the three $C(5)-C(6)$ bonds are almost equal in the three acids despite angles of twist around this bond of 11.7 (I), $65 \cdot 4$ (II), and 83.3°

[^1](III) is not altogether surprising: the length of the $s p^{2}-s p^{2}$ bond appears to be relatively insensitive to the angle of twist as is shown by a comparison of the $\mathrm{C}-\mathrm{C}$ bond lengths in planar butadienes (zero torsion angle) and in non-planar cyclo-octatetraenes (torsion angle of 60°). In the former we have found ${ }^{5}$ a value of $1 \cdot 452 \AA$ based on four structure analyses, as against $1 \cdot 462$ and $1.470 \AA$ in cyclo-octatetraene ${ }^{13}$ and its carboxylic acid. ${ }^{14}$

The length of the $\mathrm{C}-\mathrm{Cl}$ bond in vinyl chloride ${ }^{15}$ has a value ($1.726 \AA$) close to that in (I) $(1.717 \AA)$. The bond angles around the carbon atom bonded to chlorine of vinyl chloride (Figure 3) agree far better with those of the trans- than of the cis-acid; hence the non-equality

Figure 2 Experimental bond angles: (a) β-chloro-trans-, (b) β-chloro-cis-, and (c) β-methyl-cis-cinnamic acid $[\mathrm{H}(20)$ -$\left.\mathrm{C}(12)-\mathrm{H}(22) 113, \mathrm{C}(5)-\mathrm{C}(12)-\mathrm{H}(21) 109^{\circ}\right]$
of the $\mathrm{C}-\mathrm{Cl}$ bond lengths in the two acids may be related to differences in the bond angles around $C(5)$, an effect
${ }_{15}$ D. Kivelson, E. B. Wilson, and D. R. Lide, J. Chem. Phys., 1960, 32, 205.

TAble 3
Equations of planes in the form $A x+B y+C z+D=0$ where x, y, z are fractional co-ordinates; distances ($10^{3} \AA$) of relevant atoms from the planes, are given in square brackets
(a) β-Chloro-trans-cinnamic acid

Plane (A):
$\mathrm{C}(3), \mathrm{C}(4), \quad-15 \cdot 1719 x+3 \cdot 3461 y+5 \cdot 0566 z-0 \cdot 0366=0$ $\mathrm{O}(1), \mathrm{O}(2)$
$[\mathrm{C}(3) 2, \mathrm{C}(4)-1, \mathrm{O}(1)-1, \mathrm{O}(2)-1, \mathrm{C}(5)-124, \mathrm{C}(6)-197$, $\mathrm{Cl}(12)-219, \mathrm{H}(13)-40]$
Plane (B) :
$\mathrm{C}(3)-(6) \quad-14 \cdot 0740 x+3 \cdot 6269 y+5 \cdot 7385 z-0 \cdot 1253=0$
$[\mathrm{C}(3)-20, \mathrm{C}(4) 22, \mathrm{C}(5) 18, \mathrm{C}(6)-19, \mathrm{O}(1) 45, \mathrm{O}(2)-148$, $\mathrm{Cl}(12) 48, \mathrm{H}(14)-30]$
Plane (C):
$\mathrm{C}(6)-(11) \quad-15 \cdot 5570 x+3 \cdot 2651 y+3 \cdot 1997 z+0 \cdot 0085=0$
$[\mathrm{C}(6) 4, \mathrm{C}(7) 5, \mathrm{C}(8)-7, \mathrm{C}(9) 1, \mathrm{C}(10) 7, \mathrm{C}(11)-10, \mathrm{C}(3) 127$, $\mathrm{C}(4) 196, \mathrm{C}(5)-5, \mathrm{Cl}(12)-309, \mathrm{O}(1)-19, \mathrm{O}(2) 241, \mathrm{H}(14)$ $330, \mathrm{H}(15) 30, \mathrm{H}(16) 0, \mathrm{H}(17) 10, \mathrm{H}(18) 30, \mathrm{H}(19) 10]$
(b) β-Chloro-cis-cinnamic acid

Plane (A):
$\mathrm{C}(3), \mathrm{C}(4), \quad 3 \cdot 5031 x-17 \cdot 0765 y+0.0076 z+1 \cdot 7363=0$ $\mathrm{O}(1), \mathrm{O}(2)$
$\left[\mathrm{C}(3)-9, \mathrm{C}(4) 3, \mathrm{O}(1) 3, \mathrm{O}(2) 3, \mathrm{C}(5)-19, \mathrm{C}(6)-557, h^{1}(13)\right.$ $\left.-30, h^{2}(13) 0\right]$
Plane (B) :
$\mathrm{C}(3)-(6) \quad 3.5783 x-13.5315 y+1.0811 z+1.2741=0$
$[\mathrm{C}(3) 8, \mathrm{C}(4)-19, \mathrm{C}(5) 19, \mathrm{C}(6)-8, \mathrm{O}(1)-230, \mathrm{O}(2) 284$, $\mathrm{Cl}(12) 50, \mathrm{C}(7) 52, \mathrm{C}(11)-1121, \mathrm{H}(14)-70]$
Plane (C) :
$\mathrm{C}(6)-(11) \quad-2 \cdot 6216 x-17 \cdot 3975 y+4.9817 z+0 \cdot 1090=0$
$[\mathrm{C}(6) 7, \mathrm{C}(7)-9, \mathrm{C}(8) 4, \mathrm{C}(9) 3, \mathrm{C}(10)-5, \mathrm{C}(11) 0, \mathrm{C}(3) 2188$, $\mathrm{C}(4) 879, \mathrm{C}(5)-16, \mathrm{Cl}(12)-1476, \mathrm{H}(15) 0, \mathrm{H}(16)-10$, $\mathrm{H}(17) 10, \mathrm{H}(18) 30, \mathrm{H}(19) 20]$
(c) β-Methyl-cis-cinnamic acid

Plane (A) :
 $\mathrm{C}(3) 1, \mathrm{C}(4) 5, \mathrm{C}(5)-3, \mathrm{C}(6) 1, \mathrm{C}(12)-1, \mathrm{O}(1)-2, \mathrm{O}(2)-1$,
$\mathrm{C}(7) 1184, \mathrm{C}(11)-1171, \mathrm{H}(20) 820, \mathrm{H}(21)-780, \mathrm{H}(22) 10$, $\left.h^{1}(13)-50, h^{2}(13)-30\right]$

Plane (B) :
$\mathrm{C}(6)-(11) \quad 4 \cdot 7040 x-5 \cdot 3414 y+1 \cdot 8201 z+4 \cdot 2559=0$
$[\mathrm{C}(6) 9, \mathrm{C}(7)-5, \mathrm{C}(8)-4, \mathrm{C}(9) 9, \mathrm{C}(10)-6, \mathrm{C}(11)-3, \mathrm{C}(3)$ 2410, C(4) 1018, C(5) -38, C(12) -1411, H(15)-90, H(16) $0, \mathrm{H}(17) 40, \mathrm{H}(18) 0, \mathrm{H}(19) 0]$

Table 4
Comparison of experimental bond lengths (\AA)

	(I)	(II)	(III)
Mean C-C(ring)	1.383	1.382	1.375
$\mathrm{C}(5)-\mathrm{C}(6)$	1.486	1.469	1.484
$\mathrm{C}(4)-\mathrm{C}(5)$	1.326	1.336	1.331
$\mathrm{C}(3)-\mathrm{C}(4)$	1.470	1.466	1.461
$\mathrm{C}(3)-\mathrm{O}(1)$	1.211	1.264	1.275
$\mathrm{C}(3)-\mathrm{O}(2)$	1.322	1.259	1.253
$\mathrm{C}(5)-\mathrm{Cl}(12)$	1.717	1.749	
$\mathrm{C}(5)-\mathrm{C}(12)$			1.501

[^2]which probably stems from their dissimilar intramolecular environments.

In this connection the comparison of the bond lengths $C(12)-C(5)=C(4)$ in the β-methyl acid with those of propylene ${ }^{16}$ and isobutene ${ }^{17}$ is interesting: the $C=C$ values of $1.331,1.336$, and $1.334 \AA$ are identical, as are the $\mathrm{CH}_{3}-\mathrm{C}$ lengths of $1.501,1.501$, and $1.505 \AA$.

Figure 3 Vinyl chloride: bond lengths and angles (from ref. 15)

Intramolecular Non-bonded Interactions.-Comparable non-bonded 1,3 -interactions in the three acids (Table 5) show reasonably small scatter, and hence determine to a large degree the conformational details. ${ }^{18}$ Thus, the

Table 5
Comparison of intramolecular 1,3-non-bonded distances (\AA)

	(I)	(II)	(III)	Mean
$\mathrm{C}(3) \cdots \mathrm{C}(5)$	$2 \cdot 52$	$2 \cdot 49$	$2 \cdot 50$	
$\mathrm{C}(4) \cdots \mathrm{C}(6)$	$2 \cdot 49$	$2 \cdot 54$	$2 \cdot 50$	
C(5) $\cdot \cdots \mathrm{C}(7)$	$2 \cdot 50$	$2 \cdot 49$	$2 \cdot 47$	
$\mathrm{C}(5) \cdots \mathrm{C}(11)$	$2 \cdot 49$	$2 \cdot 48$	$2 \cdot 50$	2.50 ± 0.04
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 22$	$2 \cdot 22$	$2 \cdot 21$	$2 \cdot 22$
$\mathrm{O}(1) \cdots \mathrm{C}(4)$	$2 \cdot 31$	$2 \cdot 31$	2.33	
$\mathrm{O}(2) \cdots \mathrm{C}(4)$	$2 \cdot 39$	$2 \cdot 38$	$2 \cdot 40$	2.35 ± 0.05
$\mathrm{C}(\mathrm{Me}) \cdots \mathrm{C}(4)$			$2 \cdot 45$	
$\mathrm{C}(\mathrm{Me}) \cdot \cdots \mathrm{C}(6)$			$2 \cdot 52$	
$\mathrm{Cl} \cdots \mathrm{C}(4)$	$2 \cdot 65$	$2 \cdot 63$		
$\mathrm{Cl} \cdots \mathrm{C}(6)$	$2 \cdot 71$	2.70		2.67 ± 0.04

If we assign ' non-bonded radii' of $\frac{1}{2}(2 \cdot 50 \AA)$ to carbon and of $\frac{1}{2}(2 \cdot 22 \AA)$ to oxygen we arrive at the 'calculated ' $\mathrm{C} \cdot \mathrm{O}$ distance of $2.36 \AA$, the mean of the experimental values.
shape of the almost planar system $\mathrm{O}(\mathbf{1}), \mathrm{O}(2), \mathrm{C}(\mathbf{3})-(\mathbf{6}), \mathrm{Cl}$ in the trans-acid appears to be determined by the contacts $\mathrm{Cl} \cdots \mathrm{C}(6), \mathrm{Cl} \cdots \mathrm{C}(4)$, and $\mathrm{Cl} \cdots \mathrm{O}(\mathrm{l})$ since these distances reproduce the values observed in o-chlorobenzoic acid ${ }^{19}$ (Figure 4). The twist of 11.7° around the $\mathrm{C}(5)-\mathrm{C}(6)$ bond is probably controlled by the $\mathrm{Cl} \cdots \mathrm{H}(15)$ $(2.51 \AA), \quad \mathrm{Cl} \cdots \mathrm{C}(7) \quad(2.97 \AA), \quad$ and $\mathrm{H}(14) \cdots \mathrm{H}(19)$ ($2.02 \AA$) contacts.

The twist around $\mathrm{C}(5)-\mathrm{C}(6)$ in the cis-acid $\left(65 \cdot 4^{\circ}\right)$ is
18 L. S. Bartell, Tetrahedron, 1962, 17, 177.
${ }^{19}$ G. Ferguson and G. A. Sim, Acta Cryst., 1961, 14, 1262.
probably due to the $\mathrm{O}(2) \cdots \mathrm{H}(19)$ and $\mathrm{O}(2) \cdots \mathrm{C}(11)$ interactions.

Figure $4 \quad o$-Chlorobenzoic acid. Some intramolecular contacts (from ref. 19). Corresponding distances in β-chloro-transcinnamic acid in parentheses

Figure $5 \quad \beta$-Chloro-trans-cinnamic acid. Electron-density difference-Fourier section in the plane of the carboxy-dimer, contoured at intervals of $0.05 \mathrm{e}^{-3}$; zero contours are dashed and negative contours dash-dotted

In the methyl-cis-acid (III) the twist around $\mathrm{C}(5)-\mathrm{C}(6)$ is still larger, $\left(83 \cdot 3^{\circ}\right)$ and the angle $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ smaller, than in the chloro-analogue. In this configuration
ation of the exocyclic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ groups in the transacid (I) follows the established pattern. ${ }^{20}$

Structure of the Carboxy-group.-The refinement of (I) had proceeded normally with all hydrogen atoms included in chemically reasonable positions, in particular with $\mathrm{H}(13)$ attached to the longer $\mathrm{C}-\mathrm{O}$ bond along the intermolecular $\mathrm{O} \cdots \mathrm{O}$ vector. The carboxy-group had $\mathrm{C}-\mathrm{O}$ bond lengths of $1.211 \AA[\mathrm{O}(1)]$ and $1 \cdot 322 \AA[\mathrm{O}(2)]$ with a hydrogen-bonded distance $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ of $2 \cdot 66 \AA$. A difference-Fourier synthesis based on F_{c} computed with all atoms except the hydroxy-hydrogen (Figure 5) clearly showed the peak $\left(0.5 \mathrm{e}^{-3}\right)$ of this hydrogen. The position of the hydroxy-hydrogen was therefore reasonably well defined with $\mathrm{O}-\mathrm{H} 0.96 \AA$, and $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{H}(13)$ 110°; the temperature factor of the hydrogen atom was $0.086 \AA^{2}$. The deviation of the hydrogen from the plane of $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3), \mathrm{C}(4)$ was $0.04 \AA$; the carboxygroups forming the hydrogen bridge were not coplanar, the displacement between them being $0.074 \AA$.

On the other hand, the two $\mathrm{C}-\mathrm{O}$ bonds of (II) and (III) were equal in length (1.261 and $1 \cdot 259 \AA$) or nearly so (1.259 and $1 \cdot 282 \AA$). In order to locate the hydroxyhydrogens in these two compounds difference-Fourier syntheses $\delta(x y z)$ (Figures 6a, 7a) in the planes of the carboxy-groups were computed: these maps showed peaks of maximum height $0 \cdot 3 \mathrm{e}^{-3}$, extending along the $\mathrm{O} \cdots \mathrm{O}$ line. Since hydrogen atoms could not be assigned to either $\mathrm{O}(1)$ or $\mathrm{O}(2)$ two ' half-electrons ' were inserted along the $\mathrm{O} \cdots$ O line at $1 \AA$ from each oxygen, and their positional and thermal parameters refined. In the chloro-cis-acid (II) the two 'half-electrons' were eventually located at 0.87 and $0.92 \AA$ respectively from their nearest oxygen atoms, with temperature factors of 0.077 and $0.048 \AA^{2} . \quad R^{\prime}$ and R which before the insertion of those 'half-electrons' had been 0.020 and 0.047 (observed only) and 0.050 (all reflections) were reduced to

Figure 6β-Chloro-cis-cinnamic acid; electron-density difference-Fourier section in the plane of the carboxy-dimer (a) before and (b) after insertion of two ' half ' electrons, contoured as for Figure 5
$\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3)-(6)$ is planar whereas in the chloro-acid (II) the plane of the carboxy-groups makes an angle of 9° with that of the plane of $\mathrm{C}(3)-(6)$. The cis-conform${ }^{20}$ L. Leiserowitz and G. M. J. Schmidt, Acta Cryst., 1965, 18, 1058.
0.016 and $0.042(0.046)$. The two $\mathrm{C}-\mathrm{O}$ bond lengths were then 1.264 and $1 \cdot 259 \AA$. The positional parameters of the other heavy atoms were unaffected by this treatment; the changes in $u_{i j}$ did not exceed 3σ of these parameters. A new difference-Fourier synthesis $\delta(x y z)$
in the plane of the carboxy-group based on all atoms except the two ' half-electrons ' h^{1}, h^{2} showed two betterresolved peaks of height 0.25 and $0.30 \mathrm{e}^{-3}$ in the $\mathrm{O} \cdots \mathrm{O}$

110 and 118°. The distances of $h^{1}(13)$ and $h^{2}(13)$ from the plane of $C(3), C(4), O(1), O(2)$ are 0.03 and $0.01 \AA$. The carboxylic-acid pair is coplanar to within $0.02 \AA$.

(a)

(b)

Figure 7β-Methyl-cis-cinnamic acid: electron-density difference-Fourier section in the plane of the carboxy-dimer (a) before and (b) after insertion of two 'half' electrons, contoured as before

(b)
$012 A$

$012 \AA$
(c)

Figure 8 Molecular packing arrangements seen perpendicular to the plane of the carboxy-group: (a) β-chloro-trans-, (b) β-chloro-cis-, and (c) β-methyl-cis-cinnamic acid
region (Figure 6b). The peak of lower density corresponded to the 'half-electron' having the higher temperature factor.

The angles $\mathrm{C}(3)-\mathrm{O}(1)-h^{1}(13)$ and $\mathrm{C}(3)-\mathrm{O}(2)-h^{2}(13)$ are

For the β-methyl-cis-acid (III), as before, two 'halfelectrons ' were inserted and least-squares refinement was continued until R^{\prime} and R were reduced from 0.017 and $0.063(0.071)$ to 0.014 and $0.057(0.066)$. The $\mathrm{C}-\mathrm{O}$ bond
lengths were then 1.253 and $1.275 \AA$ whilst the positional parameters of all other atoms remained unchanged. The difference-Fourier map based on the last refinement cycle without the contribution of the two ' half-electrons' (Figure 7 b) shows peaks of heights 0.24 and $0.32 \mathrm{e}^{\AA}{ }^{-3}$, at 0.86 and $0.71 \AA$ respectively from their nearest oxygen atoms, with temperature factors of 0.074 and $0.035 \AA^{2}$. The angles $\mathrm{C}(\mathbf{3})-\mathrm{O}(\mathbf{1})-h^{1}(\mathbf{1 3})$ and $\mathrm{C}(3)-\mathrm{O}(2)-h^{2}(\mathbf{1 3})$ are 114 and 113°. The distance of h^{1} and h^{2} from the plane of $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3), \mathrm{C}(4)$ are 0.05 and $0.03 \AA$; the carboxydimer is non-planar, the perpendicular distance between the planes of the two carboxy-groups being $0 \cdot 184 \AA$.

In order to test the significance of an iteration procedure based on two ' half-electrons' the same treatment was applied to the carboxy-group of the β-chloro-transacid. Replacement of the hydroxy-hydrogen by two 'half-electrons' $1.0 \AA$ from each oxygen atom along the $\mathrm{O} \cdots \mathrm{O}$ vectors with temperature factors of $0.086 \AA^{2}$ led after one iteration to $u=0.197 \AA^{2}$ of the ' half-electron' attached to the $\mathrm{C}=\mathrm{O}$ and to $0.002 \AA^{2}$ of the other 'halfelectron '; the positional parameters of the oxygen atoms remained unchanged. Thus, the least-squares refinement removed the electron density near the doublybonded oxygen and sharpened up the 'half-electron 'in the neighbourhood of the 'proton' position.

Thus, we have two examples of organic acids in which

Table 6
Intermolecular contacts (\AA) bounded at the sums of van der Waals radii ${ }^{21}$ plus $0.5 \AA$

(a) β-Chloro-trans-cinnamic acid				
$A(000)^{*} D(0 \overline{1})$		$D(001)$		
$\mathrm{C}(8) \cdots \mathrm{H}(17)$	$3 \cdot 17$	C(8)	C(9)	$3 \cdot 86$
$\mathrm{C}(9) \cdots \mathrm{C}(9)$	$3 \cdot 85$	C(8).	C(10)	$3 \cdot 80$
$\mathrm{C}(9) \cdots \mathrm{H}(16)$	3.19	$\mathrm{C}(9)$		$3 \cdot 85$
$\mathrm{C}(9) \cdots \mathrm{H}(17)$	$3 \cdot 19$			
$\mathrm{C}(10) \cdots \mathrm{H}(16)$	$3 \cdot 18$		$C(000)$	
$A(010)$		C(7)	$\mathrm{Cl}^{\text {(12) }}$	3.74
		C(7)	H(15)	$3 \cdot 27$
$\mathrm{O}(2) \cdots \mathrm{C}(5)$	3.59	$\mathrm{Cl}(12$	$\cdot \mathrm{C}(12)$	$3 \cdot 86$
$\mathrm{O}(2) \cdots \mathrm{C}(4)$	$3 \cdot 59$	$\mathrm{Cl}(12$	$\cdot \mathrm{H}(15)$	$3 \cdot 46$
$\mathrm{C}(3) \cdots \mathrm{C}(5)$	$3 \cdot 87$	H(15)	H(15)	$2 \cdot 48$
$\mathrm{C}(3) \cdots \mathrm{C}(6)$	3.71	$\bar{B}(01 \mathrm{I})$		
$\mathrm{C}(3) \cdots \mathrm{C}(7)$	3.57			
$\mathrm{C}(4) \cdots \mathrm{C}(7)$	3.50	$\mathrm{C}(4)$	C(10)	$3 \cdot 77$
$\mathrm{C}(4) \cdots \mathrm{C}(8)$	3.64	C(4)	C(18)	$3 \cdot 38$
$\mathrm{C}(5) \cdots \mathrm{C}(7)$	3.75 3	C(10)	- $\mathrm{H}(14)$	$3 \cdot 28$
$\mathrm{C}(5) \cdots \mathrm{C}(8)$	3.60 3.80	C(11)	H(14)	3.36
$\mathrm{C}(6) \cdots \mathrm{C}(8)$	$3 \cdot 80$			
		$A(010)$		
$\mathrm{O}(1) \cdots \mathrm{C}(10)$	$3 \cdot 47$	C(8)	$\mathrm{C}(11)$	$3 \cdot 80$
$\mathrm{Cl}(12) \cdots \mathrm{H}(17)$	$\stackrel{3}{3 \cdot 13}$	C(9)	C(11)	$3 \cdot 78$
$\mathrm{Cl}(12) \cdots \mathrm{H}(18)$	3.02	$A(010)$		
		O(1)	C(3)	$3 \cdot 43$
$\mathrm{Cl}(12) \cdots \mathrm{H}(16)$		$\mathrm{O}(1)$	C(4)	$3 \cdot 52$
$\mathrm{Cl}(12) \cdots \cdot \mathrm{H}(16)$	$3 \cdot 36$	$\mathrm{C}(3)$	C(4)	$3 \cdot 76$
$B(001)$		C(3)	$\mathrm{Cl}(12)$	4.02
$\mathrm{C}(9) \cdots \mathrm{Cl}(12)$	3.81	$A(000)$		
$\mathrm{C}(10) \cdots \mathrm{Cl}(12)$	3.70		$\mathrm{O}(1)$	$3 \cdot 25$
$\bar{B}(00 \mathrm{I})$		$\mathrm{O}(1)$	O(2)	$2 \cdot 66$
		$\mathrm{O}(1)$	H(13)	1.69
$\bigcirc(2) \cdots \mathrm{H}(19)$	$\stackrel{3}{2 \cdot 61}$			
$\mathrm{H}(13) \cdots \mathrm{H}(18)$	$2 \cdot 75$			

Table 6 (Continued)
(b) β-Chloro-cis-cinnamic acid

$A(000) \dagger A(\overline{101})$		$A(001)$	
$\mathrm{C}(5) \cdots \cdot \mathrm{H}(16)$	3.20	$\mathrm{C}(8) \cdots \mathrm{Cl}(12)$	$3 \cdot 89$
$\mathrm{Cl}(12) \cdots \mathrm{H}(16)$	2.97	$\mathrm{C}(9) \cdots \mathrm{Cl}(12)$	3.52
		$\mathrm{C}(10) \cdots \mathrm{Cl}(12)$	$3 \cdot 76$
$B(\overline{\mathbf{1}} \mathbf{1}$ İ$)$			
$\mathrm{C}(10) \cdots \mathrm{H}(16)$	$3 \cdot 11$	$A(001)$	
		$\mathrm{O}(1) \cdots \mathrm{H}(15)$	$2 \cdot 96$
$A(\mathrm{~T} 00)$		$\mathrm{O}(2) \cdots \mathrm{C}(4)$	$3 \cdot 48$
$\mathrm{O}(1) \cdots \mathrm{Cl}(12)$	3.64	$\mathrm{C}(3) \cdots \mathrm{C}(3)$	3.69
$\mathrm{O}(2) \cdots \mathrm{H}(15)$	$2 \cdot 81$	$\mathrm{C}(3) \cdots \mathrm{C}(4)$	$3 \cdot 72$
$\mathrm{C}(3) \cdots \mathrm{Cl}(12)$	3.61		
$\mathrm{C}(10) \cdots \mathrm{H}(15)$	$3 \cdot 40$	$A(100)$	
$\mathrm{C}(11) \cdots \mathrm{Cl}(12)$	3.99	$\mathrm{C}(7) \cdots \mathrm{C}(10)$	3.81
$\mathrm{C}(11) \cdots \mathrm{H}(15)$	$3 \cdot 22$	$\mathrm{C}(7) \cdots \mathrm{C}(11)$	$3 \cdot 85$
		$\mathrm{C}(7) \cdots \mathrm{H}(18)$	3.35
$A(\mathrm{I} 00)$		$\mathrm{C}(8) \cdots \mathrm{C}(10)$	$3 \cdot 88$
$\mathrm{O}(1) \cdots \mathrm{C}(4)$	$3 \cdot 36$	$\mathrm{C}(8) \cdots \mathrm{H}(18)$	$3 \cdot 21$
$\mathrm{O}(1) \cdots \mathrm{H}(14)$	$2 \cdot 38$	$\stackrel{\mathrm{Cl}(12)}{ } \cdots \mathrm{H}(19)$	${ }^{3.08}$
$\mathrm{C}(3) \cdots \mathrm{H}(14)$	$3 \cdot 35$	$\mathrm{H}(15) \cdots \mathrm{H}(19)$ $\mathrm{H}(16)$	2.90 2.86
$\mathrm{H}(14) \cdots \mathrm{H}(14)$	$2 \cdot 89$	$\mathrm{H}(16) \cdots \mathrm{H}(18)$	$2 \cdot 86$
$A(\overline{1} 01)$		$\bar{B}(100)$	
$\mathrm{O}(1) \cdots \mathrm{O}(1)$	3.39	$\mathrm{C}(8) \cdots \mathrm{C}(10)$	$3 \cdot 87$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 62$	$\mathrm{C}(8) \cdots \mathrm{H}(18)$	3.21
$\mathrm{O}(1) \cdots \mathrm{C}(3)$	$3 \cdot 38$	$\mathrm{C}(9) \cdots \mathrm{H}(18)$	3.31
$\mathrm{O}(2) \cdots \mathrm{C}(3)$	$3 \cdot 42$	$\mathrm{H}(16) \cdots \mathrm{H}(18)$	2.51
$\mathrm{C}(\mathbf{3}) \cdots \mathrm{C}(3)$	$3 \cdot 82$	$\mathrm{H}(17) \cdots \mathrm{H}(18)$	$2 \cdot 74$
$\bar{B}(001)$		$A(101)$	
$\mathrm{C}(6) \cdots \mathrm{H}(17)$	$3 \cdot 27$	$\mathrm{C}(8) \cdots \mathrm{Cl}(12)$	3.78
$\mathrm{C}(7) \cdots \mathrm{H}(17)$	$3 \cdot 11$		
$\mathrm{C}(8) \cdots \mathrm{H}(17)$	$3 \cdot 05$	B(001)	
$\mathrm{C}(9) \cdots \mathrm{H}(17)$	$3 \cdot 15$	$\mathrm{C}(6) \cdots \mathrm{H}(17)$	3.27

the $\mathrm{C}-\mathrm{O}$ bond lengths of the carboxy-groups are essentially equal (1.26 ± 0.01), as are the $0 \cdots O$ contacts of $2.63 \pm 0.01 \AA$. We suggest that the equality of the two $\mathrm{C}-\mathrm{O}$ bond lengths can be accounted for by packing disorder of the carboxy-group pair.

Packing Arrangement.-Molecules of the chloro-transacid (I) are steeply inclined to the ac plane such that the interplanar distance between molecules related by the b axis is $3.48 \AA$. The packing diagram along the normal to the molecular plane (Figure 8a) shows that the hydrogen-bonded dimers at (000) and (010) are sandwiched between antiparallel $\mathrm{C}-\mathrm{Cl}$ bonds. The $\mathrm{C}=\mathrm{O}$ groups are packed antiparallel across centres of symmetry. No short translation contact of benzene rings exists between the molecular dimers along the b axis; instead, molecular overlap occurs between the ethylene system and part of the benzene ring.

The crystal structure of the cis-acid (II) also displays carboxy-acid dimers which are sandwiched between $\mathrm{C}-\mathrm{Cl}$ bonds (Figure 8b). The crystal structure of (III) shows hydrogen-bonded dimers which are sandwiched between antiparallel benzene rings (Figure 8c). No abnormally short intermolecular distances have been observed; a list of van der Waals contacts is given in Table 6. ${ }^{21}$

The implications of these packing arrangements for the mechanism of photoisomerisation in the solid state will be discussed elsewhere.

We acknowledge support of this work by the National Bureau of Standards, Washington, D.C.
[1/1287 Received, 26th July, 1971]
${ }^{21}$ L. Pauling, ' The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960, p. 260.

[^0]: ${ }^{6}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
 ? W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
 ${ }^{8}$ S. E. Filippakis, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1967, 290.
 ${ }_{9}$ D. Rabinovich and G. M. J. Schmidt, Nature, 1966, 211, 1391.

[^1]: ${ }^{13}$ O. Bastiansen, L. Hedberg, and K. Hedberg, J. Chem. Phys., 1957, 27, 1311.
 ${ }_{14}$ D. P. Shoemaker, H. Kindler, W. G. Sly, and R. C. Srivastava, J. Amer. Chem. Soc., 1965, 8', 482. 3 P

[^2]: ${ }_{16}$ D. R. Lide and D. Christensen, J. Chem. Phys., 1961, 35, 1374
 ${ }^{17}$ L. S. Bartell and R. A. Bonham, J. Chem. Phys., 1960, 32,

